A Convenient Method for the Preparation of Hydrogensiloxanes

Yasushi YAMAMOTO*
Silicone-Electronics Materials Research Center,
Shin-Etsu Chemical Co., Ltd.,
1-10 Hitomi, Matsuida, Gunma 379-02
(Received April 7, 1992)

Synopsis. Chlorosilanes containing fluorinated organosubstituents are hydrolyzed in a stirred mixture of 1,1,3,3-tetramethyldisiloxane and hydrochloric acid to give the corresponding hydrogensiloxanes substituted with dimethylsiloxy groups in place of chlorine atoms.

Hydrogensiloxanes1) are useful addtion reaction crosslinkers in the silicone industry. In general, siloxane compound such as 1,1,3,3,5,5-hexamethyl-1,3,5trisiloxane has been prepared by equilibration reaction from 1,1,3,3,5,5,7,7-octamethyl-1,3,5,7-cyclotetrasiloxane and 1,1,3,3-tetramethyldisiloxane,2) however, it is difficult to obtain the intended siloxanes selectively. convert the chlorine atom of chlorosilane into the dimethylsiloxy group directly, cohydrolysis of chlorosilanes with dimethylchlorosilane has been frequently used.3,4) In handling dimethylchlorosilane, however, care must be taken as it is volatile and stimulative and the reaction requires an excess of dimethylchlorosilane. The reaction of silanol with chlorosilane in the presence of amine is also well known.⁵⁾ But, preparation of the hydrogensiloxanes is restricted to the limited availability of silanols. In this paper, I wish to report the selective conversion of chlorosilanes 1 into the dimethylsiloxyterminated siloxanes 2 by the hydrolysis of chlorosilanes in a stirred mixture of 1,1,3,3-tetramethyldisiloxane and hydrochloric acid.

$$\begin{array}{ccc} & \text{Me} & \text{Me Me} \\ \text{C}_8\text{F}_{17}\text{CH}_2\text{CH}_2\overset{\text{\tiny }}{\text{SiCl}}_2 + \overset{\text{\tiny }}{\text{HSiOSiH}} + \text{H}_2\text{O} \\ \textbf{1a} & \overset{\text{\tiny }}{\text{Me Me}} \end{array}$$

$$\underbrace{[HCl]}_{C_8F_{17}CH_2CH_2Si(OSiH)_2} + 2HCl$$
29 Me

Chlorosilanes 1a—1f produced the corresponding hydrogensiloxanes 2a—2f in high yields. The results are summarized in Table 1. Chlorosilanes 1g—1i terminated with chlorosilyl group on both sides also gave hydrogensiloxanes 2g—2i in high yields. It is worth to point out that a small excess amount of dimethylsiloxy groups against the chlorine atom was sufficient to yield the hydrogensiloxanes, and the formation of polysiloxane by-products was slight. Chlorosilanes containing comparatively bulky alkyl and aryl groups also gave the hydrogensiloxanes: *i*-BuMeSiCl₂, C₅H₁₁SiCl₃, MePh-SiCl₂, Ph₂SiCl₂, and PhSiCl₃ gave corresponding siloxanes in a 76, 85, 84, 87, and 87% yield, 4) respectively.

In summary, I have demonstrated an effective method for converting the chlorine atom of chlorosilanes into a dimethylsiloxy group, from which hydrogensiloxanes can be readily synthesized.

Experimental

All boiling points were uncorrected. IR spectra were recorded on a JASCO IR-810 spectrophotometer. ¹H NMR spectra were measured on a JEOL PMX 60SI spectrometer using CHCl₃ as an internal standard.

General Procedure for Preparation of Hydrogensiloxanes. A four-necked flask was placed with 1,1,3,3-tetramethyldisiloxane (134 g, 1.0 mol), concentrated hydrochloric acid (90 g) and water (32 g), and the mixture was maintained at 5 to 10°C by cooling with ice water. Under stirring, methyl(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro)decyldichlorosilane (1a) (505 g, 0.9 mol) was added into the mixture over a period of 3 h. After the addition, 200 ml of water was added so as to maintain the reaction mixture at a temperature of 20°C or below. The organic layer was washed twice with water, twice with an aqueous 5% solution of NaHCO₃ and further 5 times with water, followed by drying over Na₂SO₄. Distillation under reduced pressure gave the siloxane 2a (536 g, 93%); 92—94°C/4 mmHg (1 mmHg=133.322 Pa).

Analytical data of products obtained are as follows.

2a: IR (neat) 2140 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.23 (s, 3H), 0.33 (d, J=9 Hz, 12H), 0.67—1.10 (m, 2H), 1.67—2.70 (m, 2H), 4.70—5.00 (m, 2H). Anal. (C₁₅H₂₁F₁₇O₂Si₃) C, H.

2b: IR (neat) 2150 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.35 (d, J=9 Hz, 18H), 0.70—1.07 (m, 2H), 1.67—2.70 (m, 2H), 4.67—5.00 (m, 3H). Anal. (C₁₆H₂₅F₁₇O₃Si₄) C, H.

2c: IR (neat) 2140 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.27 (s, 6H), 0.30 (d, J=9 Hz, 6H), 0.70—1.10 (m, 2H), 1.63—2.67 (m, 2H), 4.63—4.93 (m, 1H). Anal. (C₁₄H₁₇-F₁₇OSi₂) C, H.

2d: IR (neat) 2140 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.23 (s, 3H), 0.30 (d, J=9 Hz, 12H), 0.70—1.10 (m, 2H), 1.63—2.67 (m, 2H), 4.70—5.00 (m, 2H). Anal. (C₁₁H₂₁F₃O₂Si₃) C, H.

(m, 2H), 4.70—5.00 (m, 2H). Anal. ($C_{11}H_{21}F_3O_2Si_3$) C, H. **2e:** IR (neat) 2140 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.20 (s, 3H), 0.33 (d, J=9 Hz, 12H), 0.57—1.03 (m, 2H), 1.90—2.60 (m, 2H), 4.63—4.97 (m, 2H). Anal. ($C_8H_{21}F_3O_2Si_3$) C, H.

2f: IR (neat) 2140 and 1050 cm⁻¹; ¹H NMR (CCl₄) δ =0.20 (s, 3H), 0.30 (d, J=9 Hz, 12H), 0.63—1.07 (m, 2H), 1.70—2.53 (m, 2H), 4.63—4.97 (m, 2H). Anal. (C₁₅H₂₁F₁₇O₄Si₃) C, H.

2g was identified by comparison of its spectroscopic behavior with that prepared by the method described in Ref. 3.

2h: IR (neat) 2140 and 1070 cm⁻¹; ¹H NMR (CCl₄) δ =0.13 (s, 6H), 0.23 (d, J=9 Hz, 24H), 0.50—0.97 (m, 4H), 1.83—2.57 (m, 4H), 4.60—4.90 (m, 4H). Anal. (C₂₃H₄₂F₁₈O₇Si₆) C, H.

2i: IR (neat) 2140 and 1070 cm⁻¹; H NMR (CCl₄) δ =0.28 (d, J=9 Hz, 36H), 0.53—1.03 (m, 4H), 1.67—2.57 (m, 4H), 4.63—4.98 (m, 6H). Anal. (C₂₅H₅₀F₁₈O₉Si₈) C, H.

I wish to express my gratitude to Mr. Kunio Itoh and Mr. Toshio Takago, Director and General Manager of Silicone-Electronic Research Center, Shin-Etsu Co., Ltd., for their suggestions during this work.

Table 1. Synthesis of Hydrogensiloxanes from Chlorosilanes^{a)}

	: Cross	- 1	of neurons of 119 of ogcustionalities if our Child on all alloss		
Chlorosilane 1	Ac	Addition	Product 2	Yield ^{b)}	Bp
	Ţ.	tıme/h		%	°C/mmHg
$egin{array}{ll} Me & Me \\ {f a} & C_8F_{17}CH_2CH_2SiCI_2 \end{array}$		4	Me Me C ₈ F ₁₇ CH ₂ CH ₂ Si(OSiH) ₂ Me	93	92—94/4
b C ₈ F ₁₇ CH ₂ CH ₂ SiCl ₃		9	Me C ₈ F ₁₇ CH ₂ CH ₂ Si(OSiH) ₃ Me	85	103—104/4
$egin{array}{ccc} Me & Me & C_8F_{17}CH_2CH_2\dot{S}ICI & Me & M$		4	Me Me C ₈ F ₁₇ CH ₂ CH ₂ SiOSiH Me Me	87	76—78/3
$\begin{array}{ccc} Me \\ \mathbf{d} & C_4F_9CH_2CH_2SiCl_2 \end{array}$		ю	$egin{array}{ll} Me & Me \\ C_4F_9CH_2CH_2Si(OSiH)_2 \\ Me \end{array}$	87	65—66/5
Me e CF ₃ CH ₂ CH ₂ SiCl ₂		4	Me Me CF3CH2CH2Si(OSiH)2 Me	85	79—80/57
f F(CFCF ₂ O) ₂ CFCH ₂ CH ₂ SiCl ₂ CF ₃ CF ₃	2	4	$\begin{array}{ccc} \text{Me} & \text{Me} \\ \text{F(CFCF}_2\text{O})_2\text{CFCH}_2\text{CH}_2\text{Si(OSiH)}_2 \\ \text{CF}_3 & \text{CF}_3 & \text{Me} \end{array}$	91	72—74/2
g Cl ₃ SiCH ₂ CH ₂ C ₆ F ₁₂ CH ₂ CH ₂ SiCl ₃ ^{c)}	SiCl3 [©]	4	$egin{array}{ll} Me & Me \ (HSiO)_3SiCH_2CH_2CH_2CH_2CH_2Si(OSiH)_3 \ Me & Me \end{array}$	92	147—150/1.2×10-5
Me Me Me Me Me Me Me Cl ₂ SiCH ₂ CH ₂ CFOCF ₂ CFCF ₂ OCFCF ₂ OCFCH ₂ CH ₂ SiCl ₂ CF ₃ CF	Me CFCF2OCFCH2CH2SiCl2 CF3 CF3	en en	Me Me Me (HSiO) ₂ SiCH ₂ CH ₂ CFOCF ₂ CF ₂ OCFCF ₂ OCFCH ₂ CH ₂ Si(OSiH) ₂ Me CF ₃ CF ₃ CF ₃ Me	06	150—153/1.0×10-5
i Cl ₃ SiCH ₂ CFOCF ₂ CF ₂ OCFCF ₂ OCFCH ₂ CH ₂ SiCl ₃ CF ₃ CF ₃ CF ₃	CFCF2OCFCH2CH2SiCl3 CF3 CF3	4	Me (HSiO) ₃ SiCH ₂ CH ₂ CFOCF ₂ CF ₂ OCFCF ₂ OCFCH ₂ CH ₂ Si(OSiH) ₃ Me CF ₃ CF ₃ Me	98	160—162/1.0×10-5
:					

a) 1,1,3,3-Tetramethyldisiloxane was used so that -OSi(Me)₂H moiety was 1.1 to 1.2 equivalent per Cl. b) Isolated yield. c) Chlorosilane was added as a solution of m-bis(trifluoromethyl)benzene because chlorosilane is solid.

References

- 1) "Silicone Handbook," ed by K. Itoh, Nikkan Kogyo Shinbunsha, Tokyo (1990).
- 2) J. C. Saam, "Silicon-Based Polymer Science," ed by J. M. Zeigler and F. W. Gordon Fearon, American Chemical Society, Washington, DC (1990), Chap. 3, pp. 71—90.
- 3) a) E. M. Valles and C. W. Macosko, *Macromolecules*, **1979**, 521; b) A. A. Zhdanov, V. M. Kotov, and T. A. Pryakhina, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, **1985**, 436; *Chem. Abstr.*, **103**, 71367f (1985); c) H. A. Clark, U. S. Patent 2877255
- (1959); Chem. Abstr., **53**, 15978i (1959); d) H. A. Clark and L. A. Haluska, U. S. Patent 2877256 (1959); Chem. Abstr., **53**, 16063i (1959).
- 4) a) G. W. Holbrook, U. S. Patent 3344160 (1967); b) P. L. Carter, Y. K. Kim, and M. O. Riley, U. S. Patent 4057566 (1977) and 4100136 (1978).
- 5) a) A. J. Barry and H. N. Beck, "Inorganic Polymers," ed by F. G. A. Stone and W. A. G. Graham, Academic Press, New York, London (1962), Chap. 5, pp. 189—320; b) M. Tanaka and E. Kubo, Japan Patent 7726557 (1977); Chem. Abstr., 86, 172845w (1977).